Fluff, Stuff and Anything Else You Want to Add !

- Ted Bilderback
- Department of Horticulture Science
- North Carolina State University
- Ted_Bilderback@ncsu.edu
- http://www.ces.ncsu.edu/depts/hort/nursery

Substrates Components Studied

Incomplete List of Components

- •Pine Bark / Fir Bark, Composted Hardwood Bark,
 - Pine Chips, Whole Tree Substrate
- •Sphagnum Peat Moss, Coir, Sawdust, Bagasse
- •Sand, Soil, Pumice, Industrial Clays and Aggregates
- •Composts –Yard, Animal Wastes, Garbage, Peanut Hulls, Rice Hulls, Mushroom Compost, Cotton Gin & Stalks
- •Tire Wastes
- •Perlite/Vermiculite

PourThrough

Leachate Extraction Procedure

- Check Electrical Conductivity (soluble salts)
 fertilizer concentration
 - Units= mhos/cm², mS/cm², µS/cm²
- pH of substrate solution
- Lab analysis for nutrient

PourThrough Extraction- 120 ml / 1 G

pot

"Tip & Collect" - Catch dripping leachate 30 minutes to 2 hr after irrigation to test EC and pH

The Secrets in the Sauce!! Monitoring Soluble Salts

Using the PourThru Extraction Procedure

- Steps for Using the PourThru Extraction Method
- Irrigate nursery containers
- Wait 30 minutes to 2 hr after irrigation
- Pour irrigation water over top of container or simply collect drainage from container
- Read leachate pH and EC with pens/meters
- Record data
- Send sample to lab for nutrient analysis if desired

There are many pH and conductivity meters and pens available. They may read different units so be prepared to make conversions

Nursery Production Practices

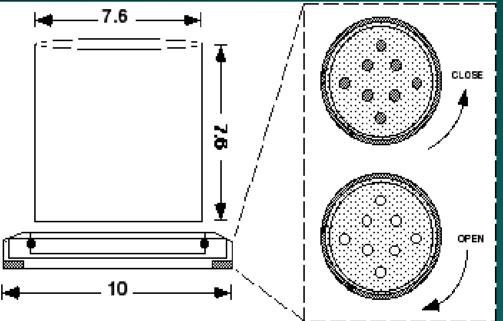
Physical Properties

- Properties Effected by Container Size
- •Air Space/Air Filled Porosity
- •Container Capacity / Available Water Content
- •Properties UnEffected by Container Size
- •Total Porosity
- •Unavailable Water Content
- •Bulk Density

Feels Good? Looks Good? What's the AFP?

Measuring Air Filled Porosity

- Not Standard Procedure for Commercial Labs
 Abandon Measurement due to inconsistent results
- Not Frequently Measured by Nursery Professionals
 Few Guidelines
 - Messy
 - Inconsistent Results
- Objective of this presentation
 - Suggestions to attain uniform observations for AFP


Why APF?

- APF is dependent upon container height
- Initial APF of Substrate important
- Organic components decompose
 APF decreases
- APF at Market Point most important
 - Greatest value when roots most at risk
- Aggregates like pumice resist loss of APF

North Carolina State University Horticultural Substrates Lab

Porometer Information

NCSU Porometer

The NCSU porometer for measuring physical properties uses standard 7.5 cm soil cores that snap into base plates which rotate to open or close the holes allowing cores to be saturated and drained.

Physical property analysis of substrates begins with filling 3 stacked soil cores. The column is tapped 3 times on the work bench before removing the center soil core for analysis

Clamps are removed from the three cores. Cores are separated and top and bottom surfaces screed to create the exact volumes of the middle core

NCSU Porometer Set-Up

Saturating cores

Open to saturate cores

Drain cores

Water level at top of core

8 21

After drainage, cores are weighed, oven dried and weighed again to determine container capacity of the substrate

tim

11111

Permanent Wilting Point= 15 bar (~220 psi) 重

3

8

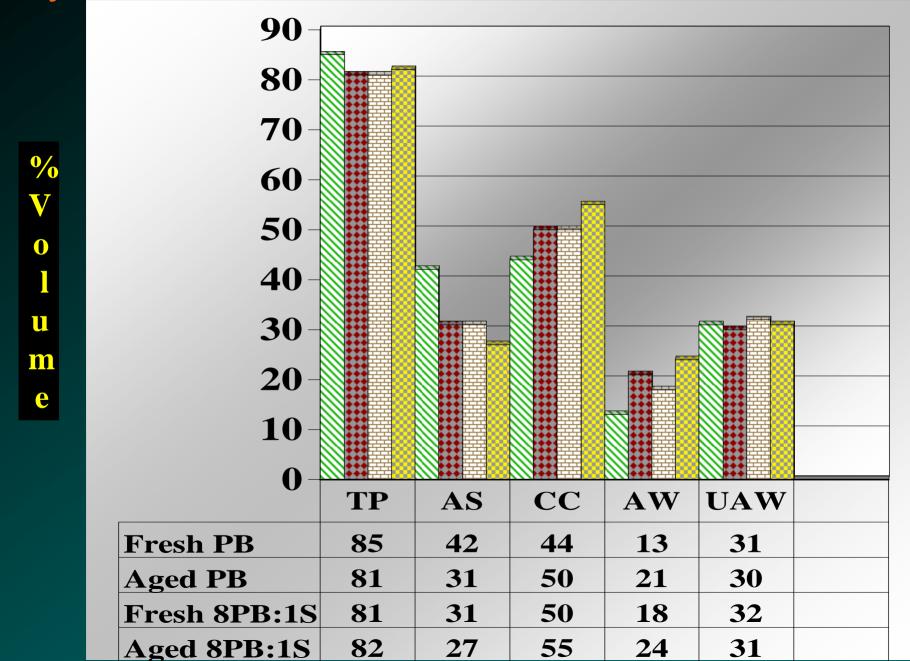
34

One inch rings at permanent wilting point are removed from the 15 bar extractor. Cores are weighed and placed into an drying oven.

After oven drying, cores are weighed again; the difference is unavailable water content. **Nursery Production Practices:**

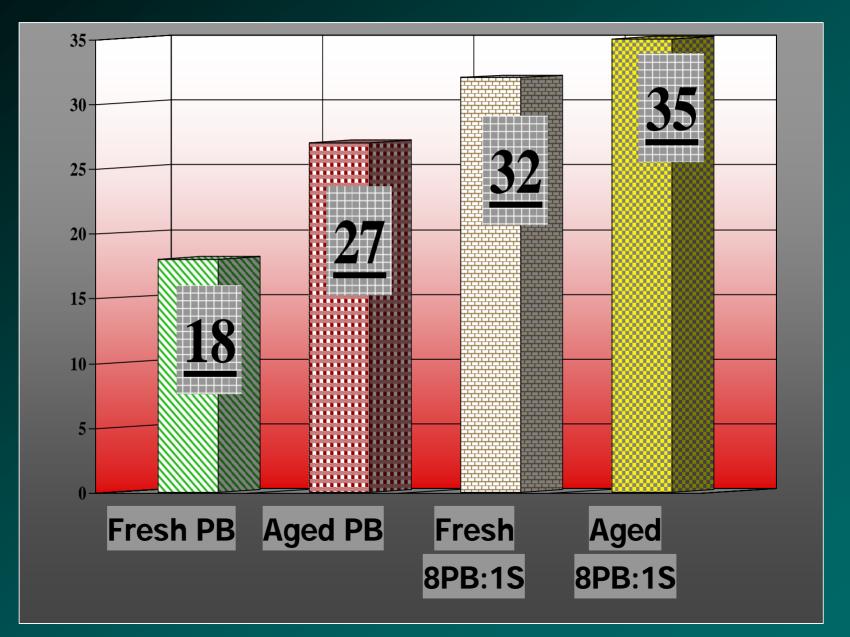
- •Total Porosity 50-85%
- •Air Space 10-30%
- Container Capacity 45-65%
- •Available / Unavailable Water Content 25-30%
- •Bulk Density- (oven dry weight)

0.19 to 0.52 g/cc (12 to 32 lbs/ft^3)


Nursery Production Practices:

Particle Size Effects of Substrates

- Organic Components decompose over time
- •Components "Fit" to create Air & Water Content
- •Fine Particles < 5 mm create water holding pores
- Desire a maximum of 20 to 30 % fine particles


Physical Properties of Substrates

Weight of Fine Particles

Decomposition of some organic components occurs rapidly reducing air space and becoming water logged and poorly drained

Fresh Red/Jack Pine

Coarse Peat Moss

Decomposed Substrate

Fresh Pine Bark

Aged Pine Bark

Fresh Pine Bark has recognizable bark, cambium and large chunks. Aged pine bark has finer particles and is a darker color.

Peanut Hulls Composted with pine bark A LONDAN BRANCE

inuea-

C. Statute

00 SIINF

Stable Components

Course Aggregates or sand can be used as components when organic components decompose rapidly. Aggregates, coarse well point sand or clays will help preserve aeration as compost, pine bark and peat moss break down to finer particles.

24/48 industrial clay

5/20 industrial clay

Permatile

Amending Container Substrate With Clay

How Do You Manage Fresh Versus Aged Pine Bark? Tiffany Harrelson, Stu Warren and Ted Bilderback

Table 2. Effect of age of bark on physical properties of an 8 pine bark : 1 sand substrate. Unavailable Container Bark Total Air Available Bulk Capacity (%) Porosity Space water (%) water (%) density (%) (%) (g/cm3)Pine Bark at treatment initiation Aged 87.3 a 25.2 b 61.1 a 26.3 a 35.8 b 0.19 a 39.3 a 49.0 b 9.8 b Fresh 39.2 a 0.17 b 88.3 a Pine Bark : Sand (8:1) at 56 days after treatment initiation 82.8 b 25.9 b Aged 56.9 a 0.32 a 22.7 a 34.3 a Fresh 36.3 a 49.1 b 15.8 b 33.3 a 0.32 a 85.4 a Pine Bark : Sand (8:1) at 336 days after treatment initiation 17.0 b 74.9 b 57.9 a 30.0 a 27.9 b 0.35 a Aged Fresh 80.1 a 24.9 a 55.2 b 22.3 b 0.35 a 32.6 a yMeans within columns and weeks after treatment initiation followed by the same letter are not significantly different as determined by Fisher's protected LSD, P = 0.05.

Fluff ©

Top and Root Dry Weight of Cotoneaster 'Skogholm' grown in aged pine bark substrates amended with

Fluff©

Substrate Treatments	Top Dry Weight	Root Dry Weight
0% Fluff; PB no lime/micro's	88.0	19.0
0% Fluff; 1Sand: 8 Pine bark	95.3	19.1
15% Fluff; 85% Pine bark	96.8	20.6
30% Fluff; 70% Pine bark	87.0	19.6
45% Fluff; 55% Pine Bark	96.7	21.7

			9		
Substrate Treatments	Air Space		Available Water		
	Initial	Final	Initial	Final	
0% Fluff ; 100% Pine bark	32.5	30.4	22.3	21.9	
15% Fluff; 85% Pine bark	30.6		23.6		
30% Fluff: 70% Pine bark	33.2	29.7	21.2	23.0	
45% Fluff; 55% Pine Bark	32.6	32.4			
Pine Bark: Sand 89% PB:11%S	23.2	20.9	28.4	29.4	
Normal		10.0- 30.0 23.0-35.0			
Ranges		(% volume)			

 Table. Results of Initial and Final Physical Properties of Aged Pine bark amended with Fluff©.

Final physical properties measured after 19 Weeks.

Cotton Stalks can be used as a potting substrate component after composting

Cotton stalks are composted with swine lagoon solids

Cotton Stalk + Swine Lagoon Solids Compost

Top and Root Dry Weight of *Cotoneaster* 'Skogholm' grown in aged pine bark substrates amended with cotton stalk / swine solids compost

Substrate Treatments	Top Dry Weight	Root Dry Weight
0% Cotton Cmp; PB no lime/micro	88.0	19.0
0% Fluff; 1Sand: 8 Pine bark	95.3	19.1
15% Cotton Cmp; 85% Pine bark	107.4	17.8
30% Cotton Cmp; 70% Pine bark	107.3	18.2
45% Cotton Cmp; 55% Pine Bark	121.01	23.4

<u>Stalk Compost.</u>	A	\ir	Av	ailable	
Treatments	Porosity		Water		
	Initial	FInal	Initial	Final	
0% CottonC ; 100% Pine bark	32.5	30.4	22.3	21.9	
15%Cotton ; 85% Pine bark	29.2	27.7			
30%CottonC: 70% Pine bark	29.3				
45% CottonC: 55% Pine Bark	23.5	25.4	29.1	26.5	
Pine Bark: Sand 89% PB:11%S	23.2	20.9	28.4	29.4	
Normal		.0- 30.0	23.	.0-35.0	
Ranges		(% י	/olume)		

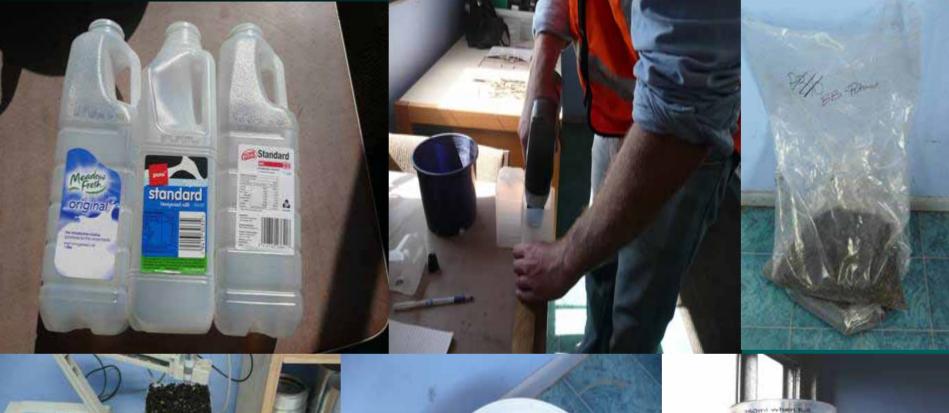
 Table. Results of Initial and Final Physical Properties of Aged Pine bark amended with Cotton

 Stalk Compost.

Final physical properties measured after **19 Weeks**.

Home Remedies for Physical Property Measurements Develop a Standard-

Fill (5-10)pots to the top- tap 3 times Strike excess


- Hand irrigate pots thoroughly and allow to drain 30 minutes
- Weigh all pots and calculate the average weight
- Use this average to compare new inventory shipments

Home Recipe System for AFP

Shrinkage- cause of inconsistent results

Pre-moistening and Packing Procedure can reduce variation Care must be taken during saturation. Particles floating out of porometers produces inconsistent results. Re-pack and start over.

Home Recipe Equipment for Measuring AFP of Substrates

Construct porometers same height as nursery container

Measure volume of porometers. Best to create equal volume porometers.

-	Milk	and in the second	The second
719	Quality An	and Slaw Price	
		New Zosland	1 Litre
Netrition Informatio Servings Par Package	24		
Serving Size		200mL	
Average Quantity Per	Sarving 200mL	Par 100ml	1
Energy Protein	510ku	255kJ	
Fat - Total	6.2g	3.10	
Saturated	8.6g	3.30	
arbohydrate	4.2g 9.4g	2.1g	-
Sugars	3.40	4.70 4.70	1
alcium 230mm	80ma	40mg	12.10
Recommended D	(29% of RDI*)	115mg	
Recommended Dieto	ry intake	and the second second	Recyclable

and the strength	1 (A.24)	
CONTRACTOR NO.	8.42	100
Sitters	3.44	
ADMENTS.	and the second se	
Accesti	TOOMS COME OF ADA IN	
in come of	and Chestory Installer	

Begrations Districted on Patiential Planning Statements

And a state of the second

Fingers plug holes during transfer from saturation.

Drill 3 to 4 holes for drainage.

Substrate preparation

PB10-2

Pre-moisten test substrate and store in plastic bag over night. Need enough for at least 3 replicate porometers plus extra for over filling. Pre-moisten substrate- Squeeze Test- a few drops of water between knuckles. Put in plastic bag and equilibrate over night before packing porometers. NZ Peat Southland Tree and Shrub Mix is 35% peat moss (0-20mm); 35% composted pine bark (0-13mm); and 30% medium pumice.

1. Overfill porometer

3. Work particles in surface

4.Smooth surface

1

2. Tap on bottom to set

All porometers should have same volume and packing should result in equal weight of each porometer.

Standard

Standard

Standard

3

Q HEPL: 0000 M2 274

1. Saturate porometers

3. Glistening indicates saturation

2. Saturate 45 min to 2 hours

4. Quickness counts- fingers in drain holes- move porometer to pan

Interpretation of AFP

<u>% AFP</u> Interpretation

- 5% Wetland crops only
- 10% Minimum for New Mixes - Plugs or shallow containers
- 15% Low for Nursery Mixes
- 20% Better for Nursery Mixes
- 30% Propagation Mixes
- 35% Frequent irrigation required
- 40% Epiphytes

Table 1. Milk Carton Porometer (MCP) Data for NZ Peat SouthlandTree and Shrub Mixz

Porometer	Pack Weight ^y (g)	Total Volume (ml)	Drained Volume (ml)	AFP ^x (%)
MCP1	511.5	719	210	29.2
MCP2	505.0	720	232	32.2
MCP3	503.5	700	225	32.1

^zNZ Peat Southland Tree and Shrub Mix is 35% peat moss (0-20mm);
 35% composted pine bark (0-13mm); and 30% medium pumice.
 ^yVariation in AFP could be decreased by adjusting MCP1 to MCP2 & MCP3 pack weight .
 ^xPercent Air Filled Porosity calculated by dividing Drained Volume by Total Volume.

NCSU Porometer mean of 3 replications for this substrate was 29.5% AFP.

Summary for Home Remedy AFP Procedure

- Pre-moisten test substrates
- Squeeze test for moisture
- Equilibrate moisture overnight in a plastic bag
- Construct porometers with equal volumes
- Pack porometers to the same weight
- Saturate and drain 3 times
- Re-pack if more than 2 mm shrinkage occurs
 - Pack for equal weight
- Measure drained pore space
- Calculate AFP [Drained volume/Total volume]

Fill porometers, Set in growing area. Analyze at end of season. AFP calculation requires adjustment for loss of volume.